Regulation and Production of Bacterial Molecular Signals in the Rhizobia – Legume Symbiosis

José María Vinardell González (PI)

Professor
Department of Microbiology, Faculty of Biology, University of Seville, Spain

0000-0002-7105-5389

jvinar@us.es

PHONE NUMBER

+34-954-554-330

Other group members

José Enrique Ruiz Sainz

Professor

María del Rosario Espuny Gómez

Professor

Ana María Buendía Clavería

Associate Professor

María Teresa Cubo Sánchez

Associate Professor

Sebastián Acosta Jurado

Postdoc

Pilar Navarro Gómez

Postdoc

Cynthia Alias Villegas

Postdoc

Nuria Medinabeitia Peiró

Technician

Francisco Fuentes Romero

Postgraduate

Research lines

  • Production of bacterial molecular signals: nodulation factors, surface polysaccharides, T3SS secreted proteins, acyl-homoserine lactones.
  • Transcriptomic studies of bacterial genes involved in the production of symbiotic signals, with special emphasis in the nod
  • Molecular determinants of the Sinorhizobium fredii HH103 host range.
  • Symbiotic interactions of Sinorhizobium fredii HH103 with its natural host (soybean, Glycine max), different wild soybean linages and the model legume Lotus japonicus.
  • Isolation, study and application of rizobiophages in the symbiosis of Sinorhizobium with different host legumes.

Representative publications

  • Acosta-Jurado S, Alías-Villegas C, Navarro-Gómez P, Almozara A, Rodríguez-Carvajal MA, Medina C, Vinardell JM (2020) Sinorhizobium fredii HH103 syrM inactivation affects the expression of a large number of genes, impairs nodulation with soybean, and extends the host-range to Lotus japonicus. Environ Microbiol 22: 1104-1124.
  • Cubo MT, Alías-Villegas C, Balsanelli E, Mesa D, de Souza E, Espuny MR (2020) Diversity of Sinorhizobium (Ensifer) meliloti bacteriophages in the rhizosphere of Medicago marina: myoviruses, filamentous and N4-like podovirus. Front Microbiol 11: 22 (doi: 3389/ fmicb.2020.00022).
  • Acosta-Jurado S, Alías-Villegas C, Almozara A, Espuny MR, Vinardell, JM, Pérez-Montaño F (2020) Deciphering the symbiotic significance of quorum sensing systems of Sinorhizobium fredii Microorganisms 8: 68 (doi: 10.3390/microorganisms 8010068).
  • Di Lorenzo F, Speciale I, Silipo A, Alías-Villegas C, Acosta-Jurado S, Rodríguez-Carvajal MÁ, Dardanelli MS, Palmigiano A, Garozzo D, Ruiz-Sainz JE, Molinaro A, Vinardell JM. (2020) Structure of the unusual Sinorhizobium fredii HH103 lipopolysaccharide and its role in symbiosis. J Biol Chem 295: 10969-10987.
  • Jiménez-Guerrero I, Acosta-Jurado S, Medina C, Ollero FJ, Alias-Villegas C, Vinardell JM, Pérez-Montaño F, López-Baena FJ (2020) The Sinorhizobium fredii HH103 Type III secretion system effector NopC blocks nodulation with Lotus japonicus J Exp Bot 71: 6043-6056.
  • Jiménez-Guerrero I, Pérez-Montaño F, Zdyb A, Beutler M, Werner G, Göttfert M, Ollero FJ, Vinardell JM, López-Baena FJ (2019) GunA of Sinorhizobium (Ensifer) fredii HH103 is a T3SS-secreted cellulase that differentially affects symbiosis with cowpea and soybean. Plant Soil 435: 15-26.
  • Acosta-Jurado S, Rodríguez-Navarro DN, Kawaharada Y, Rodríguez-Carvajal MA, Gil-Serrano A, Soria-Díaz ME, Pérez-Montaño F, Fernández-Perea J, Yanbo N, Alias-Villegas C, Jiménez-Guerrero I, Navarro-Gómez P, López-Baena FJ, Kelly S, Sandal N, Stougaard J, Ruiz-Sainz JE, Vinardell JM (2019) Sinorhizobium fredii HH103 nolR and nodD2 mutants gain capacity for infection thread invasion of Lotus japonicus Gifu and Lotus burttii. Environ Microbiol 21: 1717-1739.
  • Temprano-Vera F, Rodríguez-Navarro DN, Acosta-Jurado S, Perret X, Fossou RK, Navarro-Gómez P, Zhen T, Yu D, An Q, Buendía-Clavería AM, Moreno J, López-Baena FJ, Ruiz-Sainz JE, Vinardell JM (2018) Sinorhizobium fredii strains HH103 and NGR234 form nitrogen fixing nodules with diverse wild soybeans (Glycine soja) from Central China but are ineffective on Northern China accessions. Front Microbiol 9: 2843 (doi: 10.3389/fmicb2018.02843).
  • Acosta-Jurado S, Navarro-Gómez P, Crespo-Rivas JC, Medina C, Murdoch PS, Cuesta-Berrio L, Rodríguez-Carvajal MA, Ruiz-Sainz JE, Vinardell JM (2017) The Sinorhizobium (Ensifer) fredii HH103 rkp-2 region is involved in the biosynthesis of lipopolysaccharide and exopolysaccharide but not in K-antigen polysaccharide production. Plant Soil 417: 415-431.
  • Crespo-Rivas JC, Guefrachi I, Mok KC, Villaécija-Aguilar JA, Acosta-Jurado S, Pierre O, Taga ME, Mergaert P, Vinardell JM (2016) Sinorhizobium fredii HH103 bacteroids are not terminally differentiated and show altered O-antigen in nodules of the IRLC legume Glycyrrhiza uralensis. Environ Microbiol 18: 2392-2404.
  • Pérez-Montaño F, Jiménez-Guerrero I, Acosta-Jurado S, Navarro-Gómez P, Ollero FJ, Ruiz-Sainz JE, López-Baena FJ, Vinardell JM (2016) A transcriptomic analysis of the effect of genistein on Sinorhizobium fredii HH103 reveals novel rhizobial genes putatively involved in symbiosis. Sci Rep 6: 31592 (doi: 10.1038/srep31592).
  • Acosta-Jurado S, Navarro-Gómez P, Murdoch PdelS, Crespo-Rivas JC, Jie S, Cuesta-Berrio L, Ruiz-Sainz JE, Rodríguez-Carvajal MA, Vinardell JM (2016) Exopolysaccharide production by Sinorhizobium fredii HH103 is repressed by genistein in a NodD1-dependent manner. PLoS One 11:
  • Acosta-Jurado S, Alias-Villegas C, Navarro-Gómez P, Zehner S, Murdoch PD, Rodríguez-Carvajal MA, Soto MJ, Ollero FJ, Ruiz-Sainz JE, Göttfert M, Vinardell JM (2016) The Sinorhizobium fredii HH103 MucR1 Global Regulator Is Connected With the nod Regulon and Is Required for Efficient Symbiosis With Lotus burttii and Glycine max Williams. Mol Plant Microbe Interact 29: 700-712.
  • Acosta-Jurado S, Rodríguez-Navarro DN, Kawaharada Y, Perea JF, Gil-Serrano A, Jin H, An Q, Rodríguez-Carvajal MA, Andersen SU, Sandal N, Stougaard J, Vinardell JM, Ruiz-Sainz JE (2016) Sinorhizobium fredii HH103 invades Lotus burttii by crack entry in a Nod factor-and surface polysaccharide-dependent manner. Mol Plant Microbe Interact 29: 925-937.
  • Vinardell JM, Acosta-Jurado S, Göttfert M, Zehner S, Becker A, Baena-Ropero I, Blom J, Crespo-Rivas JC, Goesmann A, Jaenicke S, Krol E, McIntosh M, Margaret I, Pérez-Montaño F, Schneiker-Bekel S, Serrania J, Szczepanowski R, Buendia-Claveria AM, Lloret J, Bonilla I, Pühler A, Ruiz-Sainz JE, Weidner S (2015) The Sinorhizobium fredii HH103 genome: a comparative analysis with fredii strains differing in their symbiotic behaviour with soybean. Mol Plant Microbe Interact 28: 811-824.

Grants

  • López Baena FJ (IP), Vinardell González JM (co-IP) (2020-2023) Identificación de nuevas señales moleculares y de genes involucrados en la simbiosis rizobio-leguminosa. Ministerio de Ciencia e Innovación. PID2019-107634RB-I00.
  • Vinardell JM (IP) (2020-2022) Contribución del transcriptoma no codificante a la diversidad simbiótica de rizobios que nodulan leguminosas de interés agronómico. Universidad de Sevilla y fondos FEDER. US-1250546.
  • Vinardell González JM (IP) y López Baena FJ (co-IP) (2017-2019) El regulón simbiótico de Sinorhizobium fredii: identificación de genes clave en la interacción simbiótica con soja y con la leguminosa modelo Lotus. Minsterio de Ciencia e Innovación. BIO2016-78409-R.
  • Ruiz-Sainz JE (IP) (2012-2016) Estudios de las simbiosis establecidas por Sinorhizobium fredii con la soja y la leguminosa modelo Lotus. Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía. CVI-7500.
  • Espuny Gómez MR (IP) (2011-2016) Aislamiento de rizobacterias que mejoren la producción vegetal de plantas de interés agrícola en Andalucía de suelos sometidos a estrés abiótico. Junta de Andalucía. P10-AGR-5821.

Relevant methods

  • Extraction, purification and structural determination of lipochitooligosaccharides (LCOs) and acyl homoserine lactones (AHLs)
  • Purification, structural determination and analysis of surface polysaccharides (exopolysaccharides, cyclic glucans, capsular polysaccharide K-antigen, lipopolysaccharides)
  • Plant nodulation assays, nodulation kinetics, and competitiveness for nodulation
  • Microscopy analysis (optical, confocal, epifluorescence) of the symbiotic interaction rizobia-leguminous
  • Expression studies of bacterial and plant genes using qPCR, RNAseq and dual RNA-seq
  • Studies of bacterial mobility (swimming, swarmming) and biofilm formation
  • Isolation and purification of phages
  • Transmission electron microscopic studies of phages
  • Bioinformatic analysis of bacterial and phages genomes

Collaborations with other national and international research groups

  • Javier Lloret, Rafael Rivilla, Marta Martín e Ildefonso Bonilla (Universidad Autónoma de Madrid, Spain)
  • Juan Sanjuán, María J. Soto, Jose I. Jiménez Zurdo (Estación Experimental del Zaidín-CSIC Granada, Spain)
  • Anke Becker (University of Marburg, Germany)
  • Michael Götfert (University of Dresden, Germany)
  • Eva Kondorosi y Peter Mergaert (Institut des Sciences du Vegetal-CNRS,Gif-sur-Yvette, France)
  • Myriam Charpentier (John Innes Centre, UK)
  • Jens Stougaard (University of Aarhus, Dinamarca)
  • Antonio Molinaro (University of Naples Federico II, Italy)
  • Xavier Perret (University of Geneva, Suiza)
  • Mariangela Hungria (EMBRAPA, Brasil)
  • Miguel Cámara (Universidad de Nottingham, UK)
  • Emanuel Maltempi da Souza, Leonardo Magalhães Cruz (Universidad Federal de Paraná, Brasil)
  • María Camacho y Dulce Nombre Rodríguez Navarro (IFAPA Las Torres y Tomejil, Sevilla)
  • Beatriz Ramos y Javier Gutierrez Mañero (Universidad CEU San Pablo)