Skip to main content

Nitrogen Fixation

José Antonio Herrera Cervera (IP)

Associate Professor

C-6053-2015

0000-0002-7742-777X

jahc@ugr.es

PHONE NUMBER

+34-958-241-000 ext. 20001

Other group members

Miguel López Gómez

Associate Professor

Research lines

  • Legume-rhizobia symbiosis
  • Plant hemoglobins
  • Free radicals, antioxidants and nitro-oxidative stress
  • Rhizobium-legume symbiosis: biological nitrogen fixation.
  • Physiological, biochemical and molecular aspects of salt stress in the symbiosis model Medicago truncatula-Sinorhizobiu mmelilotiand Lotus japonicus-Mesorhizobium loti as well as in other grain and forage legumes of agricultural interest.
  • Nodule carbon and nitrogen metabolism.
  • Markers of oxidative stress in response to salinity in the Rhizobium-legume
  • Use of the Rhizobium-legumesymbiosis for the recovery of degraded or contaminated soils

Representative publications

  • Hidalgo-Castellanos J. Agustín J. Marín-Peña, Herrera-Cervera JA, López-Gómez M (2022) Polyamines: key elements in the rhizobia-legume symbiosis? Phytochem Rev 21: 127-140.
  • Bou R, Navarro-Vozmedian P, Domínguez R, López-Gómez M, Pinent M, Ribas-Agustí A, Benedito JJ, Lorenzo JM, Terra X, García-Pérez JV, Pateiro M, Cervera JA, Jorba-Martín R (2022) Application of emerging technologies to obtain legume protein isolates with improved techno-functional properties and health effects. Compr Rev Food Sci Food Saf 21: 2200-2232.
  • Del-Saz NF, Palma F, Herrera-Cervera JA, Ribas-Carbo M (2020) Deciphering the role of the alternative respiration under salt stress in Medicago truncatula. In: The Model Legume Medicago truncatula, pp 261-267. First Edition (de Bruijn FJ, ed.) John Wiley & Sons.
  • Hidalgo-Castellanos J, Duque AS, Burgueño A, Herrera-Cervera JA, Fevereiro P, López-Gómez M (2019) Overexpression of the arginine decarboxylase gene promotes the symbiotic interaction Medicago truncatula-Sinorhizobium meliloti and induces the accumulation of proline and spermine in nodules under salt stress conditions. J Plant Physiol 241: 153034 (doi: 10.1016/jplph.2019.153034).
  • Hidalgo-Castellanos J, Marín-Peña A, Jiménez-Jiménez S, Herrera-Cervera JA, López-Gómez M (2019) Polyamines oxidation is required in the symbiotic interaction Medicago truncatula–Sinorhizobium meliloti but does not participate in the regulation of polyamines level under salinity. Plant Growth Reg 88: 297–307.
  • López-Gómez M, Hidalgo-Castellanos J, Marín-Peña AJ, Herrera-Cervera JA (2019) Relationship between polyamines and osmoprotectants in the response to salinity of the legume-rhizobia Symbiosis. In: Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants. Recent Advances and Future Perspectives, pp 269-285. (MA Hossain, V Kumar, DJ Burritt, M Fujita, PSA Mäkelä, eds). Springer Nature, Switzerland.
  • López-Gómez M, Hidalgo J, Muñoz-Sánchez JR, Marín-Peña AJ, Lluch-Pla C, Herrera-Cervera JA (2017) Polyamines contribute to salinity tolerance in the symbiosis Medicago truncatula-Sinorhizobium meliloti by preventing oxidative damage. Plant Physiol Biochem 116: 9-17.
  • López-Gómez M, Hidalgo J, Lluch-Pla C, Herrera-Cervera JA (2016) 24-Epibrassinolide ameliorates salt stress effects in the symbiosis Medicago truncatula-Sinorhizobium meliloti and regulates the nodulation in cross-talk with polyamines. Plant Physiol Biochem 108: 212-221.
  • López-Gómez M, Cobos-Porras L, Prell J, Lluch C (2016) Homospermidine synthase contributes to salt tolerance in free living Rhizobium tropici and in symbiosis with Phaseolus vulgaris. Plant Soil 404: 413-425.
  • Salazar-Badillo FB, Sánchez-Rangel D, Becerra-Flora A, López-Gómez M, Nieto-Jacobo F, Mendoza-Mendoza A, Jimenez-Bremont JF (2015) Arabidopsis thaliana polyamine content is modified by the interaction with different Trichoderma Plant Physiol Biochem 95: 45-56.
  • López Gómez M, Hidalgo Castellanos J, Iribarne C, Lluch C (2014) Proline accumulation has prevalence over polyamines in nodules in nodules of Medicago sativa in symbiosis with Sinorhizobium meliloti during the initial response to salinity. Plant Soil 374: 149-159.
  • Palma F, López M, Tejera NA, Lluch C (2013) Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Sci 208: 75-82.
  • López-Gómez M, Iribarne-Martínez C, Herrera-Cervera JA, Lluch-Pla C (2012) Different strategies for salt tolerance in determinate and indeterminate nodules of Lotus japonicus and Medicago truncatula. Arch Agron Soil Sci 58: 1061-1073.
  • Lopez-Gomez M, Sandal N, Stougaard J, Boller T (2012) Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J Exp Bot 63: 393-401.
  • Faghire M, Bargaz A, Farissi M, Palma F, Mandri B, Lluch C, Tejera García NA, Herrera-Cervera JA, Oufdou K, Ghoulam C (2011) Effect of salinity on nodulation, nitrogen fixation and growth of common bean (Phaseolus vulgaris) inoculated with rhizobial strains isolated from the Haouz region of Morocco. Symbiosis 55: 69-75.

Grants

  • López-Gómez M (IP), Herrera JA (co-IP) (2021-2023) Biorremediación de suelos contaminados por herbicidas con hongos saprobios para la mejora de la fijación biológica de nitrógeno por leguminosas. Proyectos I+D+i del Programa Operativo FEDER 2020. B-AGR-152-UGR20
  • Moraleda A (IP) (2021-2024) Estudio sobre depredación bacteriana y su impacto en la agricultura. Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación. PID2020-112634GB-I00.
  • Herrera-Cervera JA (IP), Lluch Plá C (co-IP), López Gómez M (2014-2017) Implication of polyamines and brassinosteroids in the response to salinity of the Rhizobium-legume symbiosis: metabolic and molecular aspects. Ministerio de Economía y Competividad. AGL2013-42778-P.
  • Lluch Plá C (IP), Herrera-Cervera JA, López Gómez M (2008-2012) Use of grain and forage legumes in the bioremediation of degraded soils. Proyecto de Excelencia de la Junta de Andalucía. P07-AGR-02812.
  • Herrera-Cervera JA (IP) (2009-2011) Genetic and genomic approaches to the study of stress response in legumes. Ministerio de Ciencia e Innovación. AGL2008-00155/AGR.

Relevant methods

  • Ion Chromatography DIONEX ICS-3000 for the analysis of ions and different carbohydrates and polyalcohols
  • High Performance Liquid Chromatography (HPLC) equipped with a quaternary pump and two detectors (diode array and fluorescence). This equipment allows the quantification of phytohormones and growth regulators in plants and fruits (abscisic acid, salicylic acid, ethylene precursor ACC, indoleacetic acid and polyamines), as well as amino acids, ascorbic acid, energy load and choline among others
  • Determination of biochemical activities

Collaborations with other national and international research groups

  • Niels Sandal and Jens Stougaard (University of Aarhus, Denmark)
  • Francisco Jiménez-Bremont (Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), San Luis Potosí, México)
  • Pedro Fevereiro (Insitituto de Tecnología Química e Biológica, (ITQB), Universidade Nova de Lisboa, Portugal)
  • Néstor Fernanández del Saz (Universidad de Concepción, Chile)
  • Paula Aguilera Ñonquepán (Unversidad de la Frontera, Chile)
  • Pierre Hofman (Research Institute of Organic Agriculture (FiBL, Suiza)